
Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com

©

Improving Application Performance with
JDBC

Ramon Lawrence, VP of Engineering

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Agenda

•Executive Summary

•JDBC Overview

•Comparing existing technologies

•Heimdall Data solution

•Q&A

2

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Executive Summary

•With IT organizations moving to the cloud, application owners
and designers require flexibility to make good decisions.

–Performance and availability is directly tied to the data layer

–There is often little visibility into the app -to-database interaction

•Heimdall Data provides application resiliency with:

–Application performance & scale

–Application-aware database failover

–Database security

3

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Ramon Lawrence

•VP of Engineering, Heimdall Data

•Professor of Computer Science, University of British Columbia

•Founded Unity Data, a data virtualization company for
SQL/NoSQL database access

•Built several JDBC drivers for data integration and access to
non-relational sources (MongoDB, ServiceNow, Splunk).

•Research on database integration and tiny, embedded
databases (LittleD, IonDB) (run in 4K of RAM).

4

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Who is this for?

•Application developer
–Reduce development time, especially related to caching

and high-availability

•Application owner/architect
–Have more robust apps that scale and handle failure

without architecture changes

•Database administrator
–Reduce DB load and increase performance

–Application-level analytics on DB usage

5

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Basic Database and Application Scenario

Application Database

Application
DB
API

(JDBC)

6

Application
DB
API

(JDBC)

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com

©

JDBC Overview

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

JDBC Overview

•JDBC is an API that contains methods to connect to a
database, execute queries, and retrieve results.

•For each database, the vendor writes a JDBC driver
that implements the API.

•JVM-based languages (Java, Clojure, Groovy, Scala,
JRuby, Jython, ColdFusion) use JDBC for data access.

8

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

JDBC Interfaces

•The main interfaces in the JDBC API are:
–Driver - The main class of the entire driver.

–Connection - For connecting to the DB.

–Statement - For executing a query.

–ResultSet - For storing and manipulating results
returned by a Statement.

–DatabaseMetaData - For retrieving metadata
(schema) information from a database.

9

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Key Features of JDBC Drivers

•Key features of a JDBC driver:

–Create a connection. Close a connection.

–Execute statements on a connection.

–Translate Java API calls to network protocol of the
database.

–Transform query results into Java objects.

–Transactions and PreparedStatements.

•Vendors may not implement all methods in API
and may have own custom methods.

10

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

JDBC Example

try (Connection con = DriverManager.getConnection (url , uid , pw);

 Statement stmt = con.createStatement ();)

{

 ResultSet rst = stmt.executeQuery("SELECT ename,salary

 FROM Emp");

 System.out.println ("Employee Name,Salary");

 while (rst.next())

 System.out.println (rst.getString ("ename")

 +","+ rst.getDouble("salary"));

}

catch (SQLException ex)

{

 System.err.println (ex);

}

Declare resources

Statement and Connection objects closed by end of try

11

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

JDBC Prepared Statements Example

try (Connection con = DriverManager.getConnection (url , uid , pw);

 PreparedStatement pstmt =

 con.prepareStatement ("SELECT ename,salary FROM Emp"

 " WHERE salary > ? AND ename LIKE ?");

)

{

 pstmt.setDouble (1 , 30000);

 pstmt.setString (2 , "%e%");

 ResultSet rst = pstmt.executeQuery ();

 System.out.println ("Employee Name,Salary ");

 while (rst.next ())

 { System.out.println (rst.getString (" ename")

 +","+ rst.getDouble ("salary"));

 }

 rst.close ();

}

catch (SQLException ex) { é }

12

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

JDBC Review

Question: How many of the following are
JDBC objects?

- Driver

- Connection

- HashMap

- ResultSet

- Statement

13

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com

©

Comparing Application to
Database Technology

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

JDBC is ñLow-Levelò

•JDBC is considered a low-level API for database
access.

–Often repetitive code

–Need to carefully handle exceptions and closing of
resources

–Developers must understand SQL and relational
querying

•Fundamental challenge: Relational databases represent

data as tables with rows while Java programmers wants to
interact with classes and object instances.

–Translation back and forth between tables and objects
is tedious, error-prone, and time-consuming.

15

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Object-Relational Mapping

•Object -relational mapping (ORM)
libraries simplify this mapping which
allows application developer more time to
focus on fundamental program
logic/features.

–Java Persistence Architecture (JPA) has been
developed as a standard interface.

–Various systems (e.g. Hibernate) perform
ORM and follow JPA.

16

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

ORM Example

EntityManagerFactory factory =

 Persistence.createEntityManagerFactory (" workson ");

EntityManager em = factory.createEntityManager ();

Query q = em.createQuery ("SELECT e FROM Employee e");

for (Object obj : q.getResultList ())

{ Employee e = (Employee) obj ;

 System.out.println (e.getName () + "," + e.getSalary ());

}

em.close ();

factory.close ();

17

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

ORM Example (Mapping)

@Entity

@Table(name=" Emp")

public class Employee {

 @Id

 @Column(name=" eno")

 private String number;

 @Column(name=" ename")

 private String name;

 @Column(name="title")

 private String title;

 @Column(name="salary")

 private double salary;

 @ManyToOne

 @JoinColumn (name=" dno")

 private Department department ;

18

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

ORM Advantages/Disadvantages

Advantages:
•Hides database

organization

•Consistent Java interface

•Often allows auto-
generation of SQL

•Object-level caching

•Higher-level API

19

Disadvantages:
•Another layer on top of

JDBC to manage

•Auto-generation of SQL
may not be ideal or high -
performing even with
caching

•Cannot be easily added to
an existing application

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Challenge: In-Memory Performance/Scale-out

Application Database

Application
DB
API

(JDBC)

Data Grid Cache

Challenges:
- More systems/hardware
- Keeping cache in-sync with

DB

In-Memory

20

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Data layer scale/performance application issues

•Stateless application servers are easier to scale than
consistent databases.

•Scaling the data layer is often:

–Costly especially for commercial licensed DBs

–Challenging to implement/deploy/manage

–Results in compromises/trade-offs of consistency,
performance, and availability

21

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Application Performance Improvements

•Applications can improve performance when
interacting with the data layer by:

–Making more precise/efficient requests (SQL)

–Minimizing the amount of data requested
(caching, DB offloading)

–Batching requests to avoid network latency

22

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

High Availability and Maximum Up-Time

•Application layer achieves high availability by
replication of stateless servers

•Data layer achieves high availability by
redundancy of systems and techniques for
replication and fail-over

•Applications should be hidden from data layer
failures and transparently adapt to changes

23

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Intelligent JDBC Drivers

•Idea: Add more capabilities at the JDBC
driver level (inside the application) for
simplicity and performance.

24

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Example #1: JDBC Drivers for NoSQL Sources

•Drivers for MongoDB, Splunk, ServiceNow

–Translate SQL to native dialect

–Handle features not supported by data layer

•Example:

–JDBC driver for Couchbase built with Simba
Technologies

–JDBC API is flexible to handle non-relational
sources while maintaining standards compliance
with other software

25

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Example #2: Heimdall Data

Customer Challenges

•Application owners have little visibility at the data access layer

•DBAôs need better application performance visibility

• Inefficient SQL queries

• Network latency

Heimdall Data transparently improve application

performance through data access optimization .

•Visibility: SQL performance from an application perspective.

•Reliability: Application aware HA failover

•Performance: Application optimization with transparent caching

•Transparency: Requires ZERO application level code changes

26

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Heimdall Data Resiliency Platform

•Analytics & Monitoring

•SQL Caching & Optimizations

•Automated HA DB Failover

•Query Transformation

•Query Routing

•Data Masking & Security

JSON API

Application Server

Heimdall Data

Central Manager

Application

Heimdall Data Access Layer

D
a
ta

b
a

s
e
 A

D
a
ta

b
a

s
e
 B

27

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Heimdall Resiliency Use Cases

•High Performance

–Intelligent distributed SQL caching

•High Availability

–Application isolated from data layer failures at the JDBC
connection level

•Security

–Configurable query filtering and pattern matching to
protect against common data attacks (SQL injection)

–Learning mode with recommendations

28

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Transparent Caching

•Adding caching layer often requires code
changes (complex, costly).

•Heimdall caches at JDBC query/ResultSet
level.

•Heimdall provides recommendations on what
to cache (the hardest design/analysis
problem).

29

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Heimdall Caching Example

Application
Database

Application
Vendor
JDBC

Features:
- Drop-in installation
- Caching + optimization
- Routing, load balancing,

HA/fail-over

SQL SQL SQL

Local Cache

Heimdal
l

JDBC

?

Optional:
Data Grid Cache

Config

Heimdall Config

Server

30

Heimdall Config

Server

Fail-over

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Example Setup

•JIRA with JIRA benchmark traffic

•Two PostgreSQL databases setup in
primary-secondary replication

31

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Query Analytics - Dashboard 32

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Cache Recommendations 33

22% Server Time
80 Cache Safety

2000+ executions
0.75 ms/query

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Caching Rules 34

Rules are
regular expressions

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Query Analytics - Cache Benefits 35

11% Server Time
50% reduction

 0.1 ms/query
 8x faster

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Query Analytics - Benefit of Caching 36

Cached queries
reduce DB load
by about 50%

Average query time
reduced by 50%
(2 times overall).

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Caching - How it Works

•Cache implementation is flexible (local cache, Hazelcast,
redis, memcached).

–Operates as a look-aside cache

•Cache recommendations are built based on analyzing
query responses and detecting duplication.

–Uses history of query answers to determine frequency
that data is changing

–Highly transactional (update) tables are detected as
not cacheable.

37

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Caching - The Hard Questions

•How does cache stay in-sync with database?

–Heimdall invalidates cache entries when
detects INSERT/UPDATE/DELETE that may
change cache entry (done at table level).

–Changes that do not flow through Heimdall:

•May call API to trigger invalidation

•May use trigger-based invalidation at the
database

38

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Caching - The Hard Questions (cont.)

•How does cache at each application server stay in
sync?

–Depends on cache implementation. Heimdall
supports local cache (no sync) or grid cache like
Hazelcast which handles synchronization.

39

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

SQL Caching versus Object Caching

•Object caching at the app level:

–Allows developer full control

–Caching at higher level after objects are built

–May be done in ORM framework

•SQL result caching at the driver level:

–Can be done with no code changes

–More broad range of cache possibilities as sees all
traffic

–Benefit even if implement object caching

40

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Asynchronous Updates

•Async updates useful for logging to not slow down
page generation for stats tracking.

•Logging takes time:

1 ms/insert

41

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Asynchronous Updates - Benefits

0.05 ms/insert

42

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

High Availability and Fail-over

•Application-aware fail-over (especially useful for
relational open source MySQL/PostgreSQL)

•Detect, trigger, adapt

•Query holding

•JDBC connections often not affected by
database failures from app perspective

45

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Routing, Load Balancing, Transformation

•Based on query patterns can:

–Route SQL to different servers (including different
vendors) ï migrations, development

–Dynamic load balance across machines
(read/write, read -only).

–Transform SQL into different SQL (migrations,
quick SQL fixes in code)

47

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

SQL Security

•Heimdall's rule engine allows for enforcement of
security constraints at the SQL query level

–Query pattern filtering (deny, log)

–Identifies known query patterns (whitelist)
automatically

–Provides audit trail on all SQL requests that is
database independent

48

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

SQL Security Learned Rules 46

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Looking to the Future

ÅAvoid API Proliferation!

ÅAbstract other interfaces for similar resilience benefits

ïHTTP (URLConnection)

ïLDAP (LDAPConnection)

ïDNS (InetAddress)

ïNoSQL Interfaces (Mongo, Cassandra)

https://xkcd.com/927/

51

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com Copyright © 2016 Heimdall Data, Inc. www.heimdalldata.com

Conclusions

•Heimdall JDBC driver allows for applications to:

–Increase performance by adding caching layer
with no code changes

–Be resilient to failures in the data layer

–Be flexible for data layer changes (load balancing,
cloud deployments, routing)

–Identify and block potential SQL attacks before
they are sent to the database

48

Click to edit Master title style

Copyright © 2016 Heimdall Data, Inc.| www.heimdalldata.com

©

Thank You

